
Radix Conversion in an Unnormalized 
Arithmetic System 

By N. Metropolis and R. L. Ashenhurst 

Introduction. The question of radix conversion of variable-precision binary 
numbers arises naturally in the context of unnormalized number representation [1], 
but may be of interest in other situations where it is desired to have number repre- 
sentations carry a reflection of significance. The present paper discusses a method 
for binary-decimal conversion of unnormalized numbers; this method differs in 
certain respects from one previously developed, and described elsewhere [2], for 
use with the MANIAC III computer. The question of decimal-binary conversion, 
taking into account explicit "uncertainty" in the decimal representation, is also 
investigated from the significance viewpoint. 

Binary-Decimal Conversion. First, consider the task of converting a number in 
unnormalized floating point binary form to a decimal in such a way that a dis- 
crepancy in the lowest-order binary digit corresponds to a discrepancy in the lowest- 
order decimal digit in the result (the standard MANIAC III routine for doing this 
has a "guard bit" provision for specifying a position other than the lowest-order 
one, but this feature can be incorporated by a preliminary transformation and so is 
neglected in the development here). The question of whether the decimal exponent 
of the result is represented explicitly or by the insertion of a decimal point character 
is irrelevant to the present discussion; it will be assumed that the desired output is 
a string of decimal characters, representing an integer, and a second integer speci- 
fying an associated power of 10. 

Since 2-? i0-3, equivalent precision in binary and decimal is given by num- 
bers of digits in roughly the ratio 10 to 3; one could, of course, simply keep a count 
of decimal characters generated in a standard conversion procedure and stop at 
some approximately appropriate point. It seems not unreasonable, however, to ask 
for a conversion procedure which affords the user a more precise statement of the 
relation between the binary form and the decimal result. The observation that the 
exact conversion of integers gives also a true estimate of precision (i.e., the 10-for-3 
criterion is naturally achieved), suggests that binary-decimal conversion can be ac- 
complished by first transforming the floating point number to an integer expressed 
with the same significance, which differs from the original number only by a power 
of 10, and then taking the converted representation of this integer as the desired 
decimal string. 

Both the earlier method [2] and the one here described are based on this notion; 
the main difference centers around the preliminary transformation. It is believed 
that certain formal advantages accrue from the present approach, particularly with 
respect to the straightforward representation of the conversion error. 

Description of the Conversion. It is assumed that a sign-and-miagnitude decimal 
representation is desired, so that negative numbers are made positive before con- 

Received September 8, 1964. This work was supported by the Atomic Energy Commission 
under contract no. AT(11-1)-614. 

435 



436 N. METROPOLIS AND R. L. ASHENHURST 

version. Let (e, f) represent an unnormalized floating point number, x = 2ef, with 
e the integral exponent and f a non-negative (generally unnormalized) coefficient, 
represented as a p-place binary number according to the usual fixed-point conven- 
tion which requires f < 1. The conversion procedure is to produce an integer d, 
represented by a sequence do, di, - - , of n decimal digits (lowest-order written 
first), and an integer mn which is the associated power of 10; that is, the relation 

2ef = lOtmd, 

where 
n-1 

d E 1pk.dk, 
k 0 

I 

is to be satisfied to the appropriate degree of precision. 
The approach presently advocated is based on the following definitions: 
(1) Define 

t-p-e 

and 

2'x; 

then 

x is an integer, x = 2pf. 

(2) Define mn as the unique integer satisfying 

1 ? 10-m2-t < 10. 

and let 

w = 1O-2- 

(3) Define d as the unique integer satisfying 

d-2 < x<d+2, 

and r as the remainder 

r - - d 

which thus satisfies 

-< _ r < 

lt may now be verified that 

10'(d + r) - 10 "wx 

= 10 (10m2-t) (2tX) 

=X; 

hence the decimal representation of d may be taken to represent x scaled by 10". 
That the number of digits in d appropriately reflects the significance of the rep- 
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resentation of x is seen as follows; let iT be a "true" value of which x is an approxi- 
mation; then define the error a by 

a = 2t(x - xr); 

effectively, a is the error measured in units of the pth place of f. Thus 

x = xT + 2-bt 

and 

d 10-mx - r 

= 10m(xT + 2 5) - r 

= 10 XT + wb - r. 

The value 

= w8 - r 

may thus be taken as the error in d, measured in integral units, induced by the 
error a in x; since - - < r < 2, it follows that the essential effect is the multiplica- 
tion of the original error 8 by w, where 1 ? w < 10. Thus the error propagation 
effect in the conversion (some manner of which is inevitable due to the inconi- 
mensurability of the radices) is well represented by the magnitude of w; a con- 
venient indication of this is provided by making the integer part of w (perhaps 
rounded) available to the user along with d and m. 

Computing Method. The foregoing description is essentially abstract, and serves 
to indicate the basic features of the conversion procedure. In order to carry it out 
in practice, however, attention must be paid to questions of number representation, 
rounding, etc. These can be summed up as follows: 

(1) The computation of x from x is performed without error; if (e, f) represents 
x, then (p, f) represents x. The computation of t is also performed without error, 
since t is an integer. 

(2) The value w - 1 Om2 t is, in general, not representable exactly with p 
binary digits; however, a normalized rounded representation will have a relative 
error of order 2-' , which ordinarily induces an error in the product wt which is 
small compared to the remainder r, and hence does not affect the value of the in- 
teger d. To characterize the situation more precisely, suppose that w* is an n-digit 
approximation to w, satisfying 

W* = w(1 + a), -2-p-' < a < 2-P-1; 

then the product w*x is used to define d* and r* satisfying 

d* 1 < tw*s < d* + 12 

The difference wx - wx = wxr is bounded by 

I mtav I < 10 * 2-p-'x,) 

and this is, in general, small unless x is very large (which is the case only when x is 
represented to practically full significance). When x is small, it may cause d* - d 
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only when r ?2, and, in this case, the values of d* and d differ by unity, and 
r* TF 2. Whent is very large, it may cause d* - d by an appreciable amount (since 

| < 2P', | jo I < 5 is the best absolute bound attainable), but this is the case 
where x is known very precisely to begin with. 

(3) The calculation of d* and r* from the product w*x. is exact, and in those 
cases where d* = d, the overall calculation of d may be regarded as exact, despite 
the error in using w* instead of w. The exceptional cases are those discussed above 
under (2). 

The actual computational procedure is, of course, conditioned by the instructions 
available on the computer which is used to carry it out; the MANIAC III vocabulary 
includes exponent manipulation instructions well suited to performing the computa- 
tion of t and x, and a "specified point" multiplication instruction which allows the 
computation of wm and its decomposition into d and r to be accomplished straight- 
forwardly. 

The determination of nl and w is perhaps that part of the computation which 
requires most programming attention. A straightforward method is to have a table 
of rn and w as a function of t, and achieve the desired end by a table-lookup opera- 
tion. The total number of possible t values, however, is of the order of the number 
of possible exponent values, which, in general, leads to a rather sizable table. If it 
is noted that the defining relation for p implies 

0 < -in - t logio 2 < 1, 

it is seeni tha i mn is determined as the integer part of - t log10 2; by computing this, 
one can obtain w from a table with one entry for each possible m value (if one is 
willing to compute w - IA-m2-t from m and t, no table at all is necessary). 

One more seeming difficulty occurs in practice; if x requires full p-digit precision 
to represent it, then the integer d may require more than p digits, since d may be 
up to 10 times x. In the actual MANIAC III program this difficulty is neatly avoided 
by multiplying by w110 instead of w; since 

w _ - do + r 
10 10 10 

the integer part of this product is essentially that which is ordinarily obtained after 
the first stage of conversion of d to decimal form. This stage is therefore skipped, 
and the integer do is determined from the fractional part of the initial product. 

Decimal-Binary Conversion. The basic task in decimal-binary conversion may 
be taken to be the reversal of binary-decimal conversion; thus, it is appropriate to 
consider the problem of obtaining from a given integer d and decimal scale factor rn 
a binary number x 10md, represented in a form which would have given d and m 
on conversion by the procedure of the previous sections. It is evident that this re- 
quirement does not uniquely define the value t, since it was only required earlier 
that 1 ? 10-m2-t < 10; hence, it may be further specified that t satisfy 
1 < 10-m2-t < 2, so that the binary form obtained is that which converts to d 
and m with the minimum possible value of w = 10-m2-t. Once w is defined, x is 
determined as the rounded integer quotient obtained by dividing d by w; the re- 
mainder of this division is r = d - wx, which must satisfy- < r < 2. The final 
result is then defined as x = 2 to, differing in form from x only in exponent. 
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Computing Method. The integer d and normalized 10 m have the following rep- 
resentations: 

do (p, 2-pd) 

0l-m (t + 1, 2t110m). 

The value of d/10 m x is unchanged if both numerator and denominator are 
multiplied by the same factor; hence, x is approximately obtained by dividing 

2-td (p - t, 2-pd) 

by 

2 t10m (1, 2 -10 M). 

Assume d and in have been converted to binary form, and the value 10'm to have 
been obtained, from a table or otherwise, with exponent t + 1; the MANIAC III 

exponent manipulation instructions then allow the multiplication of d and 10-m 
by 2-t to be simply effected, and a "specified point" division can be used to obta in 
a quotient with exponent p - t (agreeing with that of the dividend). If steps are 
taken to see that the quotient is correctly rounded, the result should be a binary 
representation of x which, when reconverted by the binary-decimal algorithm, again 
yields d and in. In practice, the fact that the dividend 10 m can only be represented 
approximately in the decimal-binary conversion should exactly cancel the effect 
of the similar approximation used in the binary-decimal conversion. 

Extended Decimal-Binary Conversion. Suppose a decimal number lOmd is assumed 
to be subject to some "uncertainty," expressed in integral units by i u; thus the 
number might be represented as 10m(d ? u). A way of taking this into account in 
decimal-binary conversion is to define the corresponding binary number as one 
which converts to decimal with an effective error amplification factor of the order 
of magnitude of u. Let t be defined as in the preceding section, so that 1 < w < 2, 
with w = 10rnm2 , and let t' be defined in such a way that u w', with w' 
= 10-m2t ; adjustment of the binary result to exponent p - t' then gives approxi- 
mately the effect desired. For example, one might define t' = t - k, where k is 
specified by 2k < u < 2k+1; this would be consistent with the basic decimal-binary 
conversion, for then t' = t for 1 ? u < 2. One further modification of this rule 
seems desirable, however. By the foregoing rule, w' = 2 may lie anywhere in the 
range 2k < w' < 2k+1, and, hence, the ratio u/w' is only determined to within a 
factor 4, as 2 < u/w' < 2. This range can be narrowed by the adoption of a rule of 
the form 

(-1 2 < u/2 kw 0, 
t t-t-k-X, X = < u/2 W <20, 

t1 2 0 _ u/2 W < 2, 

where 0 is some number ' < 0 < 1. Although a standard choice for 0 would be 
= V-2/2, giving V212 < u/w' < /2 for w' = 2k+W the choice of the nearby 

value 0 = 2 has a practical advantage as regards reconvertibility of the result of 
binary-decimal conversion. To see this, note that, whenever u is the integer value 
obtained by rounding a value w = 10-m2-t in the range 1 < w < 10, then 23 < 

u/w < g4; hence, confining u/w' to this range means that binary-decimal-binary 
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conversion using the rounded w from the first conversion as the u for the second 
always gives w = w, so the original binary number is obtained again in the recon- 
version. 

The value k is obtained from the exponent of the normalized form of u, which 
is k + 1; thus 

u (k + 1, 2 k lu). 

Furthermore, one has 

2 t+kd , (p - t + k, 2 nd) 

2 10kOm t (k + 1, 2-'-1-Ym). 

The latter form can be obtained by substituting the exponent of normalized u for 
the exponent of normalized 10 m; then, since 2-t+klO-m = 2kw, the condition on 
the ratio u/2kw can be determined by a division and a comparison (if the division 
is carried out floating point, the condition can be evaluated by a test on the ex- 
ponent and on the magnitude of the coefficient of the result). The exponent p - 

t + k can also easily be obtained by subtracting the exponent of normalized lo' 
and adding the exponent of normalized u to the original exponent of d, since p - 

TABLE 1 

Sample Decimal-Binary-Decimal Conversions 
The first column gives decimal numbers, with power-of-10 exponent and uncertainty u in 

square brackets. The second column gives, in hexadecimal form, the binary numbers obtained 
by decimal-binary conversion (the 2-digit exponent is represented excess-128, the 10-digit 
coefficient is represented true-complement). The third column gives the decimal numbers ob- 
tained in turn by binary-decimal conversion, with rounded amplification factor w in square 
brackets (the representation of w is actually hexadecimal, which is the same as decimal except 
in the occurrence of "A" for 10). 

Decimal Binary Decimal 

E+28 0.3332 [1] F7 OOOOOOOAC4 E+28 0.3332 [1] 
E+28 0.3332 [2] F8 0000000562 E+28 0.3332 [2] 
E+28 0.3332 [3] F8 0000000562 E+28 0.3332 [2] 
E+28 0.3332 [4] F9 00000002B1 E+28 0.3332 [5] 
E+28 0.3332 [6] F9 00000002B1 E+28 0.3332 [5] 
E+28 0.3332 [7] FA 0000000159 E+28 0.3337 [A] 
E+28 0.3332 [12] FA 0000000159 E+28 0.3337 [A] 
E+28 0.3332 [13] FB OOOOOOOOAC E+28 0.333 [2] 
E+28 0.3332 [20] FB OOOOOOOOAC E+28 0.333 [2] 

E-13 -0.13989018219 [6] 5A FF81FF8527 E-13 -0.13989018222 [7] 
E-13 -0.13989018220 [6] 5A FF81FF8527 E-13 -0.13989018222 [7] 
E-13 -0.13989018221 [6] 5A FF81FF8527 E-13 -0.13989018222 [7] 
E-13 -0.13989018222 [6] 5A FF81FF8527 E-13 -0.13989018222 [71 
E-13 -0.13989018223 [6] 5A FF81FF8527 E-13 -0.13989018222 L7] 
E-13 -0.13989018224 [6] 5A FF81FF8527 E-13 -0.13989018222 [7] 
E-13 -0.13989018225 [6] 5A FF81FF8527 E-13 -0.13989018222 [7] 
E-13 -0.13989018226 [6] 5A FF81FF8526 E-13 -0.13989018229 [7] 
E-13 -0.13989018227 [6] 5A FF81FF8526 E-13 -0.13989018229 [7] 
E-13 -0.13989018228 [6] 5A FF81FF8526 E-13 -0.13989018229 [7] 

E+03 0.100 [12] AB 0000000006 E+03 0.10 [2] 
E-21 0.0 [5] 60 0000000000 E-21 0.0 [4] 
E-13 -0.13989018219 [1] 57 FCOFFC293C E-13 -0.139890182190 [8] 
E+28 0.3352 [20] FB OOOOOOOOAD E+28 0.335 [2] 
E+03 0.115 [14] AB 0000000007 E+03 0.11 [2] 
E+02 0.96 [4] A9 0000000018 E+02 0.96 [4] 
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(t + 1) + (k + 1) = p - t + k; if this and the divisor exponent are modified by 
X = -I (if necessary) before the final division, the result will be 10-ld at expo- 
nent p t + k + X, which can be taken as the binary form corresponding to 
10o (d ? u). 

Note that the means described here for insuring that numbers remain invariant 
under binary-decimal-binary conversion are not applicable to the case of decimal- 
binary-decimal conversion. This asymmetry is due to the assumption that measures 
of error such as w and u are carried along explicitly only with decimal numbers; 
with binary numbers these remain implicit, and, hence, more uncertain. 

Experimental Routines. MANIAC III programs for both the binary-decimal and 
decimal-binary conversion schemes have been prepared. Results of experimental 
runs demonstrating the properties of the conversions are given in Table 1. 

Institute for Computer Research 
University of Chicago 
Chicago, Illinois 

1. R. L. ASHENHURST & N. METROPOLIS, "Unnormalized floating point arithmetic," J. 
Assoc. Comput. Mach., v. 6, 1959, pp. 415-428. MR 21 #4568. 

2. H. KANNER, "Number base conversion in a significant digit arithmetic," J. Assoc. 
Comput. Mach., v. 12, 1965, pp. 242-246. 


